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Abstract
Knowledge graphs (KGs) have been successfully applied to the analysis of complex scientific and
technological domains, with automatic KG generationmethods typically building upon relation extraction
models capturing fine-grained relations between domain entities in text. While these relations are fully
applicable across scientific areas, existing models are trained on few domain-specific datasets such as
SciERC and do not perform well on new target domains. In this paper, we experiment with leveraging in-
context learning capabilities of Large Language Models to perform schema-constrained data annotation,
collecting in-domain training instances for a Transformer-based relation extraction model deployed on
titles and abstracts of research papers in the Architecture, Construction, Engineering and Operations
(AECO) domain. By assessing the performance gain with respect to a baseline Deep Learning architecture
trained on off-domain data, we show that by using a few-shot learning strategy with structured prompts
and only minimal expert annotation the presented approach can potentially support domain adaptation
of a science KG generation model.
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1. Introduction

Knowledge graphs (KGs) [1] have proved effective for representing research knowledge dis-
cussed in scientific papers and patents across several different domains [2, 3, 4]. New generation
“scientific KGs” have moved from representing purely bibliographic information of research
publications to support the construction of extensive networks of machine-readable information
about entities and relationships pertaining to a certain domain, enabling fine-grained semantic
queries over large scientific text collections such as: “retrieve all methods that are used for
Indoor Air Remediation in the time range 𝑇”.

Therefore, they can support downstream analytical services like technology trend analysis.
For example, [5] uses the statistics of relation triples of type <Method;Used-for;Task> automat-
ically extracted from paper abstracts to reconstruct historical trends of the top applications
of target methods such as “neural networks” in different areas like speech recognition and
computer vision.
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Figure 1: Sample Entity and Relation annotation from the SciERC dataset (a) and sample annotation
from an AECO paper abstract ([7]), following the SciERC annotation schema.

Methods for automatic generation of scientific KGs typically build upon training supervised
Relation Extraction (RE) models for capturing fine-grained relations between scientific entities
in text [6]. In the scholarly domain, the entity and relation specifications for this task are
defined by the SciERC initiative [5]1 and are fully applicable across scientific areas. As part of
an ongoing endeavour on innovation intelligence analytics for the Architecture, Engineering,
Construction and Operation (AECO) industry, we applied SciERC guidelines to annotate domain-
specific instances of scientific entities (e.g.Task, Method, Metrics) and their relations (e.g. Used-
for,Evaluate-for ). In Figure1 we show a few sentence-level annotations of SciERC entity and
relation types respectively from an NLP paper abstract from the SCIERC dataset (a) and from
an AECO research paper annotated via the same tagging schema (b).

One can see that the semantic schema is perfectly portable to the AECO domain. However,
state-of-the-art models for scholarly Relation Extraction have been trained on the SciERC dataset
comprising AI/ML articles and do not perform well on new target domains such as AECO[8, 9].
Moreover, manually annotating training data for this domain is a costly and time-consuming
strategy that does not scale well.

Therefore, we experiment on an empirical solution leveraging in-context learning capabilities
of Large Language Models (LLMs) [10, 11] to perform schema-constrained data annotation,
generating in-domain training instances for a baseline Relation Extraction architecture from only

1https://nlp.cs.washington.edu/sciIE/annotation_guideline.pdf
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a few manually designed sentence annotation examples, together with explicit task instructions.
Then, we test different training configurations of the model on a small test set of titles and
abstracts of AECO research papers and compare the performance with a baseline trained on
out-of-domain data.

Research on techniques for distilling knowledge from pre-trained LLMs to downstream
NLP tasks is currently highly active [12]. Prompt tuning approaches, that translate the target
downstream tasks to a masked language modeling problem have been applied to Relation
Classification [13, 14, 15]. Similarly to [15], we combine few-shot examples prompt with rich
schema information to elicit LLMs’ comprehension of the RE task. However, we explicitly
formulate the task as data annotation to the LLM.

Finally, the presented approach is in line with the view from [12] that leveraging few-shot
learning capabilities of LLMs for optimizing local, lower-sized models is a more cost-effective
strategy than relying on direct use of LLMs for inference in a production setting, which typically
faces recurrent API usage costs or requires extensive high-end computational infrastructures
for fine-tuning.

2. Data

The source data used in this experiment comprise titles and abstracts from a large collection of
around 476k research articles in the AECO area published in the time range 2010-2023, retrieved
from the OpenAlex2 open scientific graph database [16] using a set of platform-specific topic
filtering tags.

We sampled a test set of around 50 abstracts, pre-processed and sentence split them using
Spacy’s English transformer pipeline en_core_web_trf-3.6.13 and finally had them independently
annotated by two domain experts using the Brat annotation tool [17], resulting in a total of 314
sentences, 448 entities, 132 relations instances. The inter-annotator positive specific agreement
on entity detection ([18]4) reached a mean F1 score of 0.73, indicating an overall satisfying
agreement between the human annotators, although some marginal ambiguity is encountered
for such a complex task. We publicly share the current version of the test dataset (called
SCIERC-AECO) in the github: https://github.com/zavavan/sperty/blob/main/datasets/scierc_
aec/scierc_aec_test.json and plan to release extended versions in the future.

We used two random samples of respectively 3 and 10 sentences as example annotations for
the few-shot LLM prompts described below.

3. Experimental Setups

The full-stack Relation Extraction task consists of generating, for an input token sequence
𝑋 = 𝑥0, ..., 𝑥𝑛: a) a set of tuples 𝐸 = < (𝑥𝑖, ..𝑥𝑗), 𝑇𝑒 > of typed token sub-sequences of 𝑋, with
0≤𝑖, 𝑗≤𝑛 and 𝑇𝑒 ∈ 𝑇 𝐸 being a label belonging to the set 𝑇 𝐸 of entity labels; b) a set 𝑅 of triples

2https://docs.openalex.org/
3https://github.com/explosion/spacy-models/releases/tag/en_core_web_trf-3.6.1
4This corresponds to classical Cohen κ inter-rater agreement, in tasks like NER where the number of negative cases
is undefined.
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< ℎ, 𝑡, 𝑇𝑟 > where ℎ, 𝑡 ∈ 𝐸 are, respectively, the entity head and tail of the relation, and 𝑇𝑟 ∈ 𝑇𝑅 is
a relation label.

As baseline for the RE task we use SpERT (Span-based Entity and Relation Transformer) [19], a
span-based model for joint entity and relation extraction. SpERT is a relatively simple approach
using the pre-trained BERT for input token representation that classifies any arbitrary candidate
token span into entity types, filters non-entities (None entity class) and finally classifies all pairs
of remaining entities into relations.

By using only sentence-level context representations for sampling positive and negative
training examples, the architecture allows single-pass runs through BERT for each sentence,
resulting in significant speeding up of training. Despite this sentence-level RE simplification
though, SpERT significantly outperforms other joint entity/relation extractionmodels on SciERC
dataset, reaching up to 70.33% micro-average F1 on entity extraction and up to 50.84% micro-
average F1 on relation extraction (around 2.5% improvement on both tasks).

We re-trained SpERT on SciERC training set (1861 sentences) using SciBERT (cased) embed-
dings [20]. When tested over out-of-domain SCIERC-AECO data though, SpERT performance
degrades drastically. First row in Table 1 shows Micro-average F1 scores on SCIERC-AECO
for entity extraction (NER), relation detection without argument entity classification (RE) and
relation detection considering entity classification (RE_w/NEC), respectively.

In order to test few-shot learning capability of LLMs for training data generation, we ex-
periment on schema-constrained instruction prompts sent to the Chat Completion endpoint
of the OpenAI gpt-3.5-turbo-0125 (ChatGPT) API [21]. The context length of the model is
approximately 4096 tokens.

Figure 2: Basic structure of the annotation instruction Prompt to ChatGPT, with sample response
message (bottom box).



Table 1
Micro F1 (%) performance of the baseline SpERT model trained on SciERC dataset and its ChatGPT
training data variations generated with different few-shot learning prompt configurations.

Method NER RE RE_w/NEC
𝐾 = 3 𝐾 = 10 𝐾 = 3 𝐾 = 10 𝐾 = 3 𝐾 = 10

SpERT [19] 17.69 7.05 6.5

C
ha

tG
PT

Schema Prompt 19.4 19.64 4.08 4.13 2.27 2.36
Schema/Descr Prompt 19.51 19.88 5.49 7.48 3.77 5.61
Schema Prompt + SciERC 19.56 22.55 7.78 11.03 5.2 7.52
Schema/Descr Prompt + SciERC 19.26 23.78 8.79 21.82 5.49 17.27

Figure 2 displays the structure of a schema-based annotation instruction Prompt, consisting
of: a) a Task Definition part encoded as System Message and containing a definition of the
Task as sequence of annotation actions; b) a set of 𝐾 sample texts together with their expected
annotations, encoded as Assistance message; c) a set of 𝑁 input text samples, encoded as User
Message5.

We test a few variations of this Prompt schema. Namely, we optionally add plain text descrip-
tions of the Entity and Relation types to increase LLM comprehension of the annotation task.
Then, we increment the number of prompt examples to 𝐾 = {3, 10}. Full prompt instructions
and examples can be found at https://github.com/zavavan/sperty/tree/main/prompts.

All ChatGPT API calls were run with temperature parameter set to 0, top_p token probability
mass sampling set to the default value 1, token frequency_penalty and presence_penalty set to 0
default value.

For each prompt configuration, we query ChatGPT on 3373 sentences from AECO abstracts,
parse ChatGPT response messages into a training dataset and train SpERT with SciBERT (cased)
embeddings6 on it. Finally, we evaluate each model on the SCIERC-AECO test set. We also
test for training SpERT with a merge of ChatGPT-generated data with original (out-of-domain)
SciERC dataset (3800 sentences).

4. Results and Discussion

Table 1 reports Micro-average F1 scores when training with ChatGPT-generated data using the
basic instruction Prompt (Schema Prompt) and the prompt enriched with schema description
(Schema/Descr Prompt), for different values of 𝐾 prompt examples. The last two rows report
performance when training on merged ChatGPT-generated and SciERC data.

At a first glance the LLM seems to fully comply with the structural requirements of the
annotation task, consistently generating schema-based output. In some cases, it “semantically”
manipulates the input text (average 2% occurrence) so as to make the output annotations not
directly usable for sequence labeling. For example, from the sentence “The carbon emissions

5Due to OpenAI API maximum request tokens limit, these are sent in batches of 10 sentences each.
6We trained for 20 epochs with 0.1 dropout rate. Experiments were run on NVIDIA A100-SXM4-40GB GPU device.
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throughout the entire life cycle of the building have been reduced by 20.99%.” it generates an entity
not anchored in text(T1;Task;Carbon emissions reduction)7.

Overall, the performance level is not outstanding across all configurations, considering that
the same model architecture is achieving a F1 measure of 2-3 factors higher when trained on
in-domain manually curated data (SciERC) of comparable size. This may be due to the model
degrading its generalization performance by learning from noisy labels [22], which is confirmed
by observing that the best results are obtained by adding ChatGPT generated labels to curated
out-of-domain SciERC labels. By considering only LLM-generated data, most configurations
slightly outperform the baseline for NER while only one does it for RE, indicating that this is an
harder task for LLM few-shot learning with respect to NER.

Adding explicit Task definitions and increasing the number of few-shot examples both
consistently raise the performance with respect to all metrics, with the second finding seemingly
in contrast with what reported in [15].

5. Conclusions

This contribution presents our currently-ongoing work on the potentials of Large Language
Models (LLMs), specifically ChatGPT, for few-shot learning in the context of relation extraction
domain adaptation. In particular the study aimed to generate in-domain training data for a
Transformer-based relation extraction model within the Architecture, Construction, Engineer-
ing, and Operations (AECO) domain by leveraging the in-context learning capabilities of LLMs.
The experiments involved using structured prompts and minimal expert annotation to collect
training instances from AECO research paper titles and abstracts.

The results indicate that the quality of the LLM-generated annotations may not be sufficient
to support domain customization of a RE model from ground up. However, when combined with
curated out-of-domain labels it can boost the performance on the new domain significantly.

Overall, the research highlights the potential of using ChaptGPT for optimizing local, lower-
sized models, which can be a more cost-effective strategy than relying on direct use of LLMs
for inference in production settings.

Future work might include expanding the test set and conducting more extensive tests to
further validate the approach, also considering other domains than AECO. In addition, in the
future we plan to experiment with GPT-4 for data generation rather that ChatGPT, leveraging
its powerful capabilities to improve the quality of synthetic data, such as in the powerful LLaVA
multi-modal model [23].

Object of further investigation and experiments will involve also the use of the latest advances
in open-source LLMs, such as by employing open-source models like Mistral-7B-OpenOrca8,
Nous Hermes Mixtral9, and Llama-3-70B10, to explore their potential in relation extraction
tasks. This could involve comparing the performance of these models directly with the current

7In a few other cases, annotation labels out of the schema are assigned to Entity and Relations.
8Mistral-7B-OpenOrca, https://huggingface.co/Open-Orca/Mistral-7B-OpenOrca
9Nous Hermes Mixtral, https://huggingface.co/NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO
10Llama-3-70B, https://huggingface.co/meta-llama/Meta-Llama-3-70B
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approach, as well as exploring their capabilities in generating high-quality synthetic data for
fine-tuning smaller models like SpERT.
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